That color can be so computed predicts color constancy because what counts for each projector are the ratios of light from one region to light from the average surround. The exact intensity settings of the projectors no longer matter: the only stipulation is that we have to have some light from each projector; otherwise no ratio can be taken. One consequence of all this is that to have color at all, we need to have variation in the wavelength content of light across the visual field. We require color borders for color, just as we require luminance borders for black and white. You can easily satisfy yourself that this is true, again using two slide projectors. With a red filter (red cellophane works well) in front of one of the projectors, illuminate any set of objects. My favorite is a white or yellow shirt and a bright red tie. When so lit, neither the shirt nor the tie looks convincingly red: both look pinkish and washed out. Now you illuminate the same combination with the second projector, which is covered with blue cellophane. The shirt looks a washed-out, sickly blue, and the tie looks black: it's a red tie, and red objects don't reflect short wavelengths. Go back to the red projector, confirming that with it alone, the tie doesn't look especially red. Now add in the blue one. You know that in adding the blue light, you will not get anything more back from the tie--you have just demonstrated that--but when you turn on the blue projector, the red tie suddenly blazes forth with a good bright red. This will convince you that what makes the tie red is not just the light coming to you from the tie. Experiments with stabilized color borders are consistent with the idea that differences across borders are necessary for color to be seen at all. Alfred Yarbus, whose name came up in the context of eye movements in Chapter 4, showed in 1962 that if you look at a blue patch surrounded by a red background, stabilizing the border of the patch on the retina will cause it to disappear: the blue melts away, and all you see is the red background. Stabilizing the borders on the retina apparently renders them ineffective, and without them, we have no color. These psychophysical demonstrations that differences in the spectral content of light across the visual field are necessary to perceive color suggest that in our retinas or brains we should find cells sensitive to such borders. The argument is similar to the one we made in Chapter 4, about the perception of black or white objects (such as kidney beans). If at some stage in our visual path color is signaled entirely at color- contrast borders, cells whose receptive fields are entirely within areas of uniform color will be idle. The result is economy in handling the information. We thus find ourselves with two advantages to having color signaled at borders: first, color is unchanged despite changes in the light source, so that our vision tells us about properties of the objects we view, uncontaminated by information about the light source; second, the information handling is economical. Now we can ask why the system evolved the way it did. Are we to argue that the need for color constancy led to the system's evolving and that an unexpected bonus was the economy--or the reverse, that economy was paramount and the color constancy a bonus? Some would argue that the economy argument is more compelling: evolution can hardly have anticipated tungsten or fluorescent lights, and until the advent of supersuds, our shirts were not all that white anyway.